Received 28 June 2004

Accepted 6 July 2004

Online 17 July 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jiyong Yao and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail: ibers@chem.northwestern.edu

Key indicators

Single-crystal X-ray study T = 153 K Mean σ (Cu–S) = 0.001 Å R factor = 0.020 wR factor = 0.058 Data-to-parameter ratio = 18.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$RbGd_2CuS_4$

Rubidium digadolinium copper tetrasulfide, $RbGd_2CuS_4$, crystallizes in the orthorhombic space group *Cmcm* and is isostructural with KGd_2CuS_4 . The structure has a three-dimensional tunnel framework, with tunnels built from GdS_6 octahedra and CuS_4 tetrahedra. These tunnels are filled with Rb atoms.

Comment

Ternary and quaternary rare-earth chalcogenides containing a combination of d and f elements have been reviewed recently (Mitchell & Ibers, 2002). We report here the structure of RbGd₂CuS₄, a new member of this large family.

RbGd₂CuS₄, which has the KGd₂CuS₄ structure type (Stoll et al., 1998), crystallizes in space group Cmcm of the orthorhombic system. The site symmetries of the atoms in the asymmetric unit (Fig. 1) are: S3 (2/m); Rb, Cu and S1 (mm); Gd and S2 (*m*). The structure of $RbGd_2CuS_4$ is shown in Fig. 2. It has a three-dimensional tunnel framework built from GdS₆ octahedra and CuS₄ tetrahedra. The tunnel, comprising a tenmembered ring of four Cu-S bonds and six Gd-S bonds, is only large enough in cross section to accommodate one Rb atom. Each Rb atom is coordinated to a bicapped trigonal prism of eight S atoms, with Rb-S distances ranging from 3.193 (1) to 3.7557 (4) Å, comparable to those of 3.247 (2) to 3.7951 (4) Å in RbNd₂CuS₄ (Huang & Ibers, 2000). The Gd-S distances range from 2.7259 (6) to 2.8500 (2) Å, consistent with those of 2.697 (1) to 2.8437 (2) Å in $Rb_2Gd_4Cu_4S_9$ (Huang & Ibers, 2000), and the Cu-S distances are 2.346 (1) and 2.361 (1) Å, comparable to those of 2.3530 (9) and 2.4025 (8) Å in KNd₂CuS₄ (Yao et al., 2003).

Experimental

 $RbGd_2CuS_4$ was obtained as red blocks from a solid-state reaction of Rb_2S_3 (1.2 mmol), Gd (1.0 mmol, Aldrich, 99%), Cu (0.5 mmol,

O 2004 International Union of Crystallography Printed in Great Britain – all rights reserved 🕀 S(2)

Figure 1 The atoms in the asymmetric unit of $RbGd_2CuS_4$, with displacement ellipsoids shown at the 90% probability level.

inorganic papers

Aldrich, 99.999%) and S (2.0 mmol, Aldrich, 99.5%). The Rb_2S_3 reactive flux (Sunshine *et al.*, 1987) was prepared by the stoichiometric reaction of Rb (Aldrich, 98+%) and S in liquid NH₃. The reactants were loaded into a fused-silica tube under an Ar atmosphere in a glove box. The tube was sealed under a 10^{-4} Torr atmosphere and then placed in a computer-controlled furnace. The sample was heated to 1173 K over a period of 25 h, kept at 1173 K for 3 d, slowly cooled at 10 K h⁻¹ to 473 K and then cooled to room temperature.

Mo $K\alpha$ radiation

reflections

 $\theta = 3.0-28.3^{\circ}$ $\mu = 27.44 \text{ mm}^{-1}$

T = 153 (2) KBlock, red

 $R_{\rm int}=0.048$

 $\theta_{\rm max} = 28.3^{\circ}$

 $h = -5 \rightarrow 5$

 $k = -17 \rightarrow 18$

 $l = -18 \rightarrow 18$

Cell parameters from 4160

 $0.25 \times 0.16 \times 0.12 \text{ mm}$

546 independent reflections

542 reflections with $I > 2\sigma(I)$

Crystal data

RbGd ₂ CuS ₄
$M_r = 591.75$
Orthorhombic, Cmcm
a = 4.0030 (3) Å
b = 13.7095 (10) Å
c = 13.8146 (10) Å
$V = 758.13 (10) \text{ Å}^3$
Z = 4
$D_x = 5.184 \text{ Mg m}^{-3}$

Data collection

Bruker SMART 1000 CCD diffractometer ω scans Absorption correction: numerical face-indexed (*SHELXTL*; Sheldrick, 2003)

 $T_{\min} = 0.012, T_{\max} = 0.122$ 4276 measured reflections

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.03P)^2]$
 $R[F^2 > 2\sigma(F^2)] = 0.020$ where $P = (F_o^2 + 2F_c^2)/3$
 $wR(F^2) = 0.058$ $(\Delta/\sigma)_{max} < 0.001$

 S = 1.40 $\Delta\rho_{max} = 1.40 \text{ e Å}^{-3}$

 546 reflections
 $\Delta\rho_{min} = -1.20 \text{ e Å}^{-3}$

 30 parameters
 Extinction correction: SHELXL97

 Extinction coefficient: 0.0049 (3)
 ω

Table 1

Selected geometric parameters (Å, °).

Gd-S1	2.7259 (6)	Rb-S2 ^v	3.3160 (9)
Gd-S2 ⁱ	2.7348 (8)	Rb-S3	3.7557 (4)
Gd-S2 ⁱⁱ	2.7688 (11)	Cu-S2 ^{vi}	2.3460 (11)
Gd-S3 ⁱⁱⁱ	2.8500 (2)	Cu-S1 ⁱⁱⁱ	2.3612 (11)
Rb-S1 ^{iv}	3.1928 (14)		
S1-Gd-S2 ⁱ	87.98 (3)	S1-Gd-S3viii	95.19 (3)
S2 ⁱ -Gd-S2 ^{vii}	94.09 (3)	S2 ⁱ -Gd-S3 ^{viii}	88.267 (18)
S1-Gd-S2 ⁱⁱ	166.52 (4)	S3 ⁱⁱⁱ -Gd-S3 ^{viii}	89.221 (8)
S2 ⁱ -Gd-S2 ⁱⁱ	82.86 (3)	S2 ^{vi} -Cu-S2 ^{ix}	111.60 (6)
S2 ⁱ -Gd-S3 ⁱⁱⁱ	176.13 (2)	$S2^{vi}$ -Cu- $S1^{iii}$	107.35 (2)
S2 ⁱⁱ -Gd-S3 ⁱⁱⁱ	94.396 (18)	S1 ⁱⁱⁱ -Cu-S1 ^{viii}	115.92 (8)

Symmetry codes: (i) $-\frac{1}{2} - x, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) $x, y, \frac{1}{2} - z$; (iii) $\frac{1}{2} + x, \frac{1}{2} + y, z$; (iv) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (v) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (vi) $-x, 1 - y, z - \frac{1}{2}$; (vii) $\frac{1}{2} - x, \frac{1}{2} - y, z - \frac{1}{2}$; (viii) $x - \frac{1}{2}, \frac{1}{2} + y, z$; (ix) -x, 1 - y, 1 - z.

Figure 2 Structure of RbGd₂CuS₄, viewed down [100].

The maximim and minimum residual electron densities are located 0.96 and 1.27 Å from atoms Gd and Cu, respectively.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2003); program(s) used to refine structure: *SHELXTL*; molecular graphics: *XP* in *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This research was supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

References

- Bruker (2003). *SMART* (Version 5.054) and *SAINT-Plus* (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Huang, F. Q. & Ibers, J. A. (2000). J. Solid State Chem. 151, 317-322.
- Mitchell, K. & Ibers, J. A. (2002). Chem. Rev. 102, 1929–1952.
- Sheldrick, G. M. (2003). SHELXTL DOS/Windows/NT. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
- Stoll, P., Dürichen, P., Näther, C. & Bensch, W. (1998). Z. Anorg. Allg. Chem. 624, 1807–1810.
- Sunshine, S. A., Kang, D. & Ibers, J. A. (1987). J. Am. Chem. Soc. 109, 6202– 6204.
- Yao, J., Deng, B., Ellis, D. E. & Ibers, J. A. (2003). J. Solid State Chem. 176, 5–12.